中考数学知识点:梯形、三角形的性质

已知等腰梯形ABCD中,AD∥BC,AB=CD=AD=3,梯形中位线EF与对角线BD相交于点M,且BD⊥CD,则MF的长为()

A.1.5B.3C.3.5D.4.5

考点:等腰梯形的性质,直角三角形中30°锐角的性质,梯形及三角形的中位线.

分析:根据等腰梯形的性质,可得∠ABC与∠C的关系,∠ABD与∠ADB的关系,根据等腰三角形的性质,可得∠ABD与∠ADB的关系,根据直角三角形的性质,可得BC的长,再根据三角形的中位线,可得答案.

解答:已知等腰梯形ABCD中,AD∥BC,AB=CD=AD=3,

∴∠ABC=∠C,∠ABD=∠ADB,∠ADB=∠BDC.∴∠ABD=∠CBD,∠C=2∠DBC.

∵BD⊥CD,∴∠BDC=90°,∴∠DBC=∠C=30°,BC=2DC=2×3=6.

∵EF是梯形中位线,∴MF是三角形BCD的中位线,∴MF=BC=6=3,

故选:B.

点评:本题考查了等腰梯形的性质,利用了等腰梯形的性质,直角三角形的性质,三角形的中位线的性质.