范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。相信许多人会觉得范文很难写?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。

高中数学教学设计例题篇1

为了更好地贯彻落实和科课程标准有关要求,促进广大教师学习现代教学理论,进一步激发广大教师课堂教学的创新意识,切实转变教学观念,积极探索新课程理念下的教与学,有效解决教学实践中存在的问题,促进课堂教学质量的全面提高,在20xx年由福建省普通教育教学研究室组织,举办了一次教学设计大赛活动。这次活动数学学科高中组共收到有49篇教学设计文章。获奖文章推荐评审专家组本着公平、公正的原则,经过认真的评审,全部作品均评出了相应的奖项;专家组还为获得一、二等奖的作品撰写了点评。本稿收录的作品全部是参加此次福建省教学设计竞赛获奖作者的文章。按照征文的规则,我们对入选作品的格式作了一些修饰,并经过适当的`整合,以飨读者。

在此还需要说明的是,为了方便阅读,获奖文章的排序原则,并非按照获奖名次的前后顺序,而是按照高中数学新课程必修1—5的内容顺序,进行编排的。部分体现大纲教材内容的文章则排在后面。

不管你获得的是哪个级别的奖项,你们都可以有成就感,因为那是你们用心、用汗浇灌出的果实,它记录了你们奉献于数学教育事业的心路历程。书中每一篇的教学设计都耐人寻味,都能带给我们许多遐想和启迪。你们是优秀的,在你们未来悠远的职业里程中,只要努力,将有更多的辉煌在等待着大家。谢谢你们!

1、集合与函数概念实习作业

《普通高中课程标准实验教科书·数学(1)》(人教a版)第44页。-----《实习作业》。本节课程体现数学文化的特色,学生通过了解函数的发展历史进一步感受数学的魅力。学生在自己动手收集、整理资料信息的过程中,对函数的概念有更深刻的理解;感受新的学习方式带给他们的学习数学的乐趣。

该内容在《普通高中课程标准实验教科书·数学(1)》(人教a版)第44页。学生第一次完成《实习作业》,积极性高,有热情和新鲜感,但缺乏经验,所以需要教师精心设计,做好准备工作,充分体现教师的“导演”角色。特别在分组时注意学生的合理搭配(成绩的好坏、家庭有无电脑、男女生比例、口头表达能力等),选题时,各组之间尽量不要重复,尽量多地选不同的题目,可以让所有的学生在学习共享的过程中受到更多的数学文化的熏陶。

《标准》强调数学文化的重要作用,体现数学的文化的价值。数学教育不仅应该帮助学生学习和掌握数学知识和技能,还应该有助于学生了解数学的价值。让学生逐步了解数学的思想方法、理性精神,体会数学家的创新精神,以及数学文明的深刻内涵。

1、了解函数概念的形成、发展的历史以及在这个过程中起重大作用的历史事件和人物;

2、体验合作学习的方式,通过合作学习品尝分享获得知识的快乐;

3、在合作形式的小组学习活动中培养学生的领导意识、社会实践技能和民主价值观。

五、教学重点和难点

重点:了解函数在数学中的核心地位,以及在生活里的广泛应用;

难点:培养学生合作交流的能力以及收集和处理信息的能力。

【课堂准备】

1、分组:4~6人为一个实习小组,确定一人为组长。教师需要做好协调工作,确保每位学生都参加。

2、选题:根据个人兴趣初步确定实习作业的题目。教师应该到各组中去了解选题情况,尽量多地选择不同的题目。

高中数学教学设计例题篇2

《同角三角函数关系式》是人教版高中新教材必修4第一章第二节的第二课。本节内容是同角三角函数关系式的运用,三种题型“知值求值”“弦化切”“函数思想的应用”。

二、学生情况分析

本课时研究的是同角三角函数关系式的运用、逆用及变形,因此在教学过程中要发展学生的已有认知,发挥知识迁移。

三、教学目标

知识目标:

1掌握同角三角函数关系式的运用、逆用及变形;

2掌握同角三角函数关系式的三种题型。

能力目标:

渗透分类讨论思想、方程思想。

情感、态度、价值观目标:

发展学生研究问题、解决问题的能力。

四、教学重难点

重点:

同角三角函数关系式的运用、逆用及变形;

难点:

1、正确判断三角函数的符号

2、灵活运用公式做运算

五、教学方法与策略

教学中注意用新课程理念处理教材,采用学生自主探索、动手实践、合作交流、师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程。根据本节课内容、高一学生认知特点,本节课采用“启发探索、讲练结合”的方法组织教学。

六、教学过程

引入(课件中:)

两个公式

新课

例1练习1(课件中)

意图:加强学生对公式的理解,让学生学会知值求值,能注意角的取值范围,正确判断函数值符号。

例2练习1(课件中)

意图:让学生掌握齐次式分子分母同除余弦化正切。

例3练习3(课件中)

意图:让学生理解掌握方程思想的应用。

小结(课件中)

作业(课件中)

高中数学教学设计例题篇3

-->

1.知识与技能

(1)通过实物操作,增强学生的直观感知。

(2)能根据几何结构特征对空间物体进行分类。

(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

(4)会表示有关于几何体以及柱、锥、台的分类。

2.过程与方法

(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。

(2)让学生观察、讨论、归纳、概括所学的知识。

3.情感态度与价值观

(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。

(2)培养学生的空间想象能力和抽象括能力。

二、教学重点、难点

重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

难点:柱、锥、台、球的结构特征的概括。

三、教学用具

(1)学法:观察、思考、交流、讨论、概括。

(2)实物模型、投影仪

四、教学思路

(一)创设情景,揭示课题

1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。

2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。

(二)、研探新知

1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。

3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。

(1)有两个面互相平行;

(2)其余各面都是平行四边形;

(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。

4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。

6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。

7.让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。

8.引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。

9.教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。

(三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。

1.有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱。

2.棱柱的何两个平面都可以作为棱柱的底面吗?

3.课本p8,习题1.1a组第1题。

5.棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?

四、巩固深化

高中数学教学设计例题篇4

1.把握菱形的判定。

2.通过运用菱形知识解决具体问题,提高分析能力和观察能力。

3.通过教具的演示培养学生的学习爱好。

4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想。

二、教法设计

观察分析讨论相结合的方法

三、重点·难点·疑点及解决办法

1.教学重点:菱形的判定方法。

2.教学难点:菱形判定方法的综合应用。

四、课时安排

1课时

五、教具学具预备

教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具

六、师生互动活动设计

教师演示教具、创设情境,引入新课,学生观察讨论;学生分析论证方法,教师适时点拨

七、教学步骤

复习提问

1.叙述菱形的定义与性质。

2.菱形两邻角的比为1:2,较长对角线为,则对角线交点到一边距离为________.

引入新课

师问:要判定一个四边形是不是菱形最基本的判定方法是什么方法?

生答:定义法。

此外还有别的两种判定方法,下面就来学习这两种方法。

讲解新课

菱形判定定理1:四边都相等的四边形是菱形。

高中数学教学设计例题篇5

1、知识目标

高中数学教学设计例题篇6

1.能从二倍角的正弦、余弦、正切公式导出半角公式,了解它们的内在联系;揭示知识背景,引发学生学习兴趣,激发学生分析、探求的学习态度,强化学生的参与意识.并培养学生综合分析能力.

2.掌握公式及其推导过程,会用公式进行化简、求值和证明。

3.通过公式推导,掌握半角与倍角之间及半角公式与倍角公式之间的联系,培养逻辑推理能力。

二、过程与方法

2.通过例题讲解,总结方法.通过做练习,巩固所学知识.

三、情感、态度与价值观

1.通过公式的推导,了解半角公式和倍角公式之间的内在联系,从而培养逻辑推理能力和辩证唯物主义观点。

2.培养用联系的观点看问题的观点。

【教学重点与难点】:

重点:半角公式的推导与应用(求值、化简、证明)

难点:半角公式与倍角公式之间的内在联系,以及运用公式时正负号的选取。

【学法与教学用具】:

1.学法:

(1)自主+探究性学习:让学生自己由和角公式导出倍角公式,领会从一般化归为特殊的数学思想,体会公式所蕴涵的和谐美,激发学生学数学的兴趣。

(2)反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距.

2.教学方法:观察、归纳、启发、探究相结合的教学方法。

引导学生复习二倍角公式,按课本知识结构设置提问引导学生动手推导出半角公式,课堂上在老师引导下,以学生为主体,分析公式的结构特征,会根据公式特点得出公式的应用,用公式来进行化简证明和求值,老师为学生创设问题情景,鼓励学生积极探究。

3.教学用具:多媒体、实物投影仪.

【授课类型】:新授课

【课时安排】:1课时

【教学思路】:

一、创设情景,揭示课题

二、研探新知

四、巩固深化,反馈矫正

五、归纳整理,整体认识

1.巩固倍角公式,会推导半角公式、和差化积及积化和差公式。

2.熟悉“倍角”与“二次”的关系(升角--降次,降角--升次).

3.特别注意公式的三角表达形式,且要善于变形:

4.半角公式左边是平方形式,只要知道角终边所在象限,就可以开平方;公式的“本质”是用?角的余弦表示角的正弦、余弦、正切.

5.注意公式的结构,尤其是符号.

六、承上启下,留下悬念

七、板书设计(略)

八、课后记:略

7)

2)掌握等比数列的定义理解等比数列的通项公式及其推导

2、能力目标

1)学会通过实例归纳概念

2)通过学习等比数列的通项公式及其推导学会归纳假设

3)提高数学建模的能力

3、情感目标:

1)充分感受数列是反映现实生活的模型

2)体会数学是来源于现实生活并应用于现实生活

3)数学是丰富多彩的而不是枯燥无味的

1、教学对象分析:

1)高中生已经有一定的学习能力,对各方面的知识有一定的基础,理解能力较强。并掌握了函数及个别特殊函数的性质及图像,如指数函数。之前也刚学习了等差数列,在学习这一章节时可联系以前所学的进行引导教学。

2)对归纳假设较弱,应加强这方面教学

2、学习需要分析:

1.课前复习

1)复习等差数列的概念及通向公式

2)复习指数函数及其图像和性质

2.情景导入

菱形判定定理2:对角钱互相垂直的平行四边形是菱形。图8

分析判定1:首先证它是平行四边形,再证一组邻边相等,依定义即知为菱形。

分析判定2:

师问:本定理有几个条件?

生答:两个。

师问:哪两个?

生答:(1)是平行四边形(2)两条对角线互相垂直。

师问:再需要什么条件可证该平行四边形是菱形?

生答:再证两邻边相等。

(由学生口述证实)

证实时让学生注重线段垂直平分线在这里的应用,

师问:对角线互相垂直的四边形是菱形吗?为什么?

可画出图,显然对角线,但都不是菱形。

菱形常用的判定方法归纳为(学生讨论归纳后,由教师板书):

注重:(2)与(4)的题设也是从四边形出发,和矩形一样它们的题没条件都包含有平行四边形的判定条件。

例4已知:的对角钱的垂直平分线与边、分别交于、,如图。

求证:四边形是菱形(按教材讲解).

总结、扩展

1.小结:

(1)归纳判定菱形的四种常用方法。

(2)说明矩形、菱形之间的区别与联系。

2.思考题:已知:如图4△中,平分,交于。

求证:四边形为菱形。

八、布置作业

高中数学教学设计例题篇9

数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。

二、教材分析

三角函数的诱导公式是普通高中课程标准实验教科书(人教a版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六).本节是第一课时,教学内容为公式(二)、(三)、(四).教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角 与 、 、 终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四).同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求.为此本节内容在三角函数中占有非常重要的地位.

三、学情分析

本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容.

四、教学目标

(1).基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;

(4).个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观.

五、教学重点和难点

1.教学重点

理解并掌握诱导公式.

2.教学难点

正确运用诱导公式,求三角函数值,化简三角函数式.

六、教法学法以及预期效果分析

高中数学优秀教案高中数学教学设计与教学反思

“授人以鱼不如授之以鱼”, 作为一名老师,我们不仅要传授给学生数学知识,更重要的是传授给学生数学思想方法, 如何实现这一目的,要求我们每一位教者苦心钻研、认真探究.下面我从教法、学法、预期效果等三个方面做如下分析.

1.教法

数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质.

在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”, 由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦.

2.学法

“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,很多课堂教学常常以高起点、大容量、快推进的做法,以便教给学生更多的知识点,却忽略了学生接受知识需要时间消化,进而泯灭了学生学习的兴趣与热情.如何能让学生最大程度的消化知识,提高学习热情是教者必须思考的问题.

在本节课的教学过程中,本人引导学生的学法为思考问题、共同探讨、解决问题 简单应用、重现探索过程、练习巩固。让学生参与探索的全部过程,让学生在获取新知识及解决问题的方法后,合作交流、共同探索,使之由被动学习转化为主动的自主学习.

3.预期效果

本节课预期让学生能正确理解诱导公式的发现、证明过程,掌握诱导公式,并能熟练应用诱导公式了解一些简单的化简问题.

七、教学流程设计

(一)创设情景

1.复习锐角300,450,600的三角函数值;

2.复习任意角的三角函数定义;

3.问题:由 ,你能否知道sin2100的值吗?引如新课.

设计意图

高中数学优秀教案 高中数学教学设计与教学反思

自信的鼓励是增强学生学习数学的自信,简单易做的题加强了每个学生学习的热情,具体数据问题的出现,让学生既有好像会做的心理但又有迷惑的茫然,去发掘潜力期待寻找机会证明我能行,从而思考解决的办法.

(二)新知探究

1. 让学生发现300角的终边与2100角的终边之间有什么关系;

2.让学生发现300角的终边和2100角的终边与单位圆的交点的坐标有什么关系;

2100与sin300之间有什么关系.

设计意图:由特殊问题的引入,使学生容易了解,实现教学过程的平淡过度,为同学们探究发现任意角 与 的三角函数值的关系做好铺垫.

(三)问题一般化

练习:课本p7练习1、2(1)(10)

课本p8习题1.1第2、3、4题

五、归纳整理

由学生整理学习了哪些内容

六、布置作业

探究11

1.探究发现任意角 的终边与 的终边关于原点对称;

2.探究发现任意角 的终边和 角的终边与单位圆的交点坐标关于原点对称;

3.探究发现任意角 与 的三角函数值的关系.

(四)练习

利用诱导公式(二),口答三角函数值。

喜悦之后让我们重新启航,接受新的挑战,引入新的问题.

(五)问题变形

高中数学教学设计例题篇12

(一)内容:集合间的基本关系。

(二)解析:本节课要学的内容有集合间的基本关系指的是集合间的包含和相等关系,其核心(或关键)是弄清楚集合中的元素之间的关系理解它关键就是分析清楚集合中的元素,学生已经学过了集合的含义与表示并且学习过实数间的大小关系。本节课的内容集合间的基本关系就是在此基础上的发展(或就是它的下位概念,就可以类比它,等等)(定起点)。由于它还与后续很多内容,比如圆锥曲线有思想方法上(都通过类比的想法来进行学习)联系,所以在本学科有着很重要的地位,是学习后面知识的基础,是本学科的核心内容。教学的重点是子集、真子集、等集和空集所以解决重点的关键是分析好集合间的关系、弄清楚集合中的元素。

二、目标及其解析

(一)教学目标

(1)理解集合之间包含与相等的含义,能识别给定集合的子集、真子集;

(2)在具体情境中,了解空集的含义;

(二)解析

(2)在具体情境中,了解空集的含义。就是指要掌握空集的含义,能分析给出的集合是否为空集;对关于空集的规定即空集是任何非空集合的子集,是任何非空集合的真子集要牢记。

三、问题诊断分析

在本节课的教学中,学生可能遇到的问题是解题中对空集是任意集合的子集这一条件容易忽略,产生这一问题的原因是对这一新规定接受度不强。要解决这一问题,就是要依据实例反复操练,其中关键是师生的互动要到位。

四、教学过程设计

一、导入新课

二、提出问题

问题1:观察下面几个例子,你能发现两个集合间有什么关系了吗?

(1);

(3)设

(4).

问题2:同样是子集,会不会有差别呢?

(1)请看幻灯片上的例子,你能发现什么问题吗?

(2)这两种不同的情形该如何表述呢?

(3)学生回答,师生共同归纳出真子集和集合相等的数学定义及数学语言表述。

问题3:请看幻灯片上给出的几个集合,你能发现什么问题?

(1)这些集合有什么共同特征?

(2)你能举出更多的空集的例子吗?

(3)你认为空集和其它集合是什么关系?和非空集合又是什么关系

三。概念的巩固和应用

四。课堂目标检测

优化设计:随堂练习。

五。小结

1、集合之间的关系,子集,集合相等,真子集等概念;

2、venn图的运用;

3、空集的定义和性质;

4、集合之间的基本关系的主要结论;

5、当一个集合有n个元素的时候,其子集有个,真子集有个,非空真子集有个。

高中数学教学设计例题篇13

教材分析

函数是高中数学的重要内容。高中数学对于函数的定义比较抽象,不易理解。高中数学相比初中数学来说更偏重于理解,所以,理解函数的定义是学好函数这一重要部分的基础。理解函数的定义关键在于理解对应关系。

学情分析

初中数学对于函数的定义比较好理解,而在高中数学里函数的定义是从集合的角度来描述的。函数的三要素是定义域、对应关系、值域。函数本质是一种对应关系。直接讲定义时学生时难于理解的,尤其是对抽象的函数符号 的理解。

教法分析

现在的教学理念是以学生的学为中心的,要将学生的学寓于教学活动中去,让学生去体验,去感悟。本节课以学生熟知的消消乐游戏开始,由问题引出对应的概念,进而引导学生们去联想生活中的对应关系,比如健康码、一个萝卜一个坑儿等。这些生活中的现象之中就蕴含着函数的概念,从而自然引入函数的概念。

教学重难点

函数的概念的理解

学习结果评价

能自己描述一个函数的例子。能判断 是否为函数。

教学过程

一、游戏导入

学生体验消消乐游戏后,思考:两个图形怎么样才能消失。

二、想一想生活中的对应关系

健康码、一个萝卜一个坑儿。

三、

再看一个例子

旅行前了解当地的天气

问题1:该气温变化图中有哪些变量?

问题2:变量之间是什么关系?

问题3:能否用集合语言来阐述它们之间的关系?

问题4:再了解函数的概念之后,你能否再举一些函数的例子?

问题5:我也来举一些例子,你们看看是不是函数关系?

四、课堂小结

理解函数的概念关键在于理解其中的对应关系。

函数概念教学设计

《函数概念》说课稿

函数的概念教学反思

函数——教学设计

if函数教学设计

-->

高中数学教学设计例题篇14

教学目标:

(1)了解坐标法和解析几何的意义,了解解析几何的基本问题

(2)进一步理解曲线的方程和方程的曲线

(3)初步掌握求曲线方程的方法

(4)通过本节内容的教学,培养学生分析问题和转化的能力

教学重点、难点:求曲线的方程

教学用具:计算机

教学方法:启发引导法,讨论法

教学过程:

【引入】

1.提问:什么是曲线的方程和方程的曲线

学生思考并回答,教师强调

2.坐标法和解析几何的意义、基本问题

对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过研究方程的性质间接地来研究曲线的性质,这一研究几何问题的方法称为坐标法,这门科学称为解析几何,解析几何的两大基本问题就是:

(1)根据已知条件,求出表示平面曲线的方程

(2)通过方程,研究平面曲线的性质

【问题】

如何根据已知条件,求出曲线的方程

【概括总结】通过学生讨论,师生共同总结:

分析上面两个例题的求解过程,我们总结一下求解曲线方程的大体步骤:

首先应有坐标系;其次设曲线上任意一点;然后写出表示曲线的点集;再代入坐标;最后整理出方程,并证明或修正。说得更准确一点就是:

(1)建立适当的坐标系,用有序实数对例如表示曲线上任意一点的坐标;

(2)写出适合条件的点的集合;

(3)用坐标表示条件,列出方程;

(4)化方程为最简形式;

(5)证明以化简后的方程的解为坐标的点都是曲线上的点。

上述五个步骤可简记为:建系设点;写出集合;列方程;化简;修正

下面再看一个问题:

【小结】师生共同总结:

(1)解析几何研究研究问题的方法是什么?

(2)如何求曲线的方程?

【作业】课本第72页练习1,2,3;