法拉第电磁感应定律,要学会感应电动势大小的计算方法。这部分内容和楞次定律是本章的两大重要内容,应该高度重视。下面小编为大家整理了2022高中物理电磁感应教案 电磁感应现象教案高中,大家快一起来看看吧!

(3)导线运动方向和磁感线平行时,E=1

(4)速度V为平均值(瞬时值),E就为平均值(瞬时值)

问题:当导体的运动方向跟磁感线方向有一个夹角θ,感应电动势可用上面的公式计算吗?

用课件展示如图所示电路,闭合电路的一部分导体处于匀强磁场中,导体棒以v斜向切割磁感线,求产生的感应电动势。

解析:可以把速度v分解为两个分量:垂直于磁感线的分量v1=vsinθ和平行于磁感线的分量v2=vcosθ。后者不切割磁感线,不产生感应电动势。前者切割磁感线,产生的感应电动势为

E=BLv1=BLvsinθ

强调:在国际单位制中,上式中B、L、v的单位分别是特斯拉(T)、米(m)、米每秒(m/s),θ指v与B的夹角。

5、公式比较

与功率的两个公式比较得出E=ΔΦ/Δt:求平均电动势

E=BLV : v为瞬时值时求瞬时电动势,v为平均值时求平均电动势

课堂练习:

例题1:下列说法正确的是( D )

A、线圈中磁通量变化越大,线圈中产生的感应电动势一定越大

B、线圈中的磁通量越大,线圈中产生的感应电动势一定越大

C、线圈处在磁场越强的位置,线圈中产生的感应电动势一定越大

D、线圈中磁通量变化得越快,线圈中产生的感应电动势越大

例题2:一个匝数为100、面积为10cm2的线圈垂直磁场放置,在0. 5s内穿过它的磁场从1T增加到9T。求线圈中的感应电动势。

解:由电磁感应定律可得E=nΔΦ/Δt①

ΔΦ= ΔB×S②

由① ②联立可得E=n ΔB×S/Δt

代如数值可得E=1.6V

例题3、在磁感强度为0.1T的匀强磁场中有一个与之垂直的金属框ABCD,框电阻不计,上面接一个长0.1m的可滑动的金属丝ab,已知金属丝质量为0.2g,电阻R=0.2Ω,不计阻力,求金属丝ab匀速下落时的速度。(4m/s)

问1:将上题的框架竖直倒放,使框平面放成与水平成30°角,不计阻力,B垂直于框平面,求v ?

答案:(2m/s)

问2:上题中若ab框间有摩擦阻力,且μ=0.2,求v ?

答案:(1.3m/s)

问3:若不计摩擦,而将B方向改为竖直向上,求v ?

答案:(2.67m/s)

问4:若此时再加摩擦μ=0.2,求v ?

答案:(1.6m/s)

【课堂小结】

1、让学生概括总结本节的内容。请一个同学到黑板上总结,其他同学在笔记本上总结,然后请同学评价黑板上的小结内容。

2、认真总结概括本节内容,并把自己这节课的体会写下来、比较黑板上的小结和自己的小结,看谁的更好,好在什么地方。

3、让学生自己总结所学内容,允许内容的顺序不同,从而构建他们自己的知识框架。

【布置作业】选修3-2课本第16页“思考与讨论”

课后作业:第17页1、2、3、5题

【课后反思】

让学生概括总结本节的内容。请一个同学到黑板上总结,其他同学在笔记本上总

结,然后请同学评价黑板上的小结内容。让学生自己总结所学内容,允许内容的顺序不同,从而构建他们自己的知识框架,把书本知识转化为自己的知识,让学生有收获成功感。

本节课,重点是理解法拉第电磁感应定律,不要过多的进行训练,不能急于求成,应该循序渐进.

物理电磁感应教案2

一、预习目标

(1).知道什么是感生电场。

(2).知道感生电动势和动生电动势及其区别与联系。

二、预习内容:感生电动势与动生电动势的概念

1、.感生电动势 :

2 、动生电动势 :

三、提出疑惑

什么是电源?什么是电动势?

电源是通过非静电力做功把其他形式能转化为电能的装置。

如果电源移送电荷q时非静电力所做的功为W,那么W与q的比值 ,叫做电源的电动势。用E表示电动势,则:

在电磁感应现象中,要产生电流,必须有感应电动势。这种情况下,哪一种作用扮演了非静电力的角色呢?下面我们就来学习相关的知识。

课内探究学案

一、学习目标

(1).知道感生电场。

(2).知道感生电动势和动生电动势及其区别与联系。

(3).理解感生电动势与动生电动势的概念

学习重难点:

重点:感生电动势与动生电动势的概念。

难点:对感生电动势与动生电动势实质的理解。

二、学习过程

探究一:感应电场与感生电动势

投影教材图4.5-1,穿过闭会回路的磁场增强,在回路中产生感应电流。是什么力充当非静电力使得自由电荷发生定向运动呢?英国物理学家麦克斯韦认为,磁场变化时在空间激发出一种电场,这种电场对自由电荷产生了力的作用,使自由电荷运动起来,形成了电流,或者说产生了电动势。这种由于磁场的变化而激发的电场叫感生电场。感生电场对自由电荷的作用力充当了非静电力。由感生电场产生的感应电动势,叫做感生电动势。

探究二:洛伦兹力与动生电动势

一段导体切割磁感线运动时相当于一个电源,这时非静电力与洛伦兹力有关。由于导体运动而产生的电动势叫动生电动势。

如图所示,导体棒运动过程中产生感应电流,试分析电路中的能量转化情况。

导体棒中的电流受到安培力作用,安培力的方向与运动方向相反,阻碍导体棒的运动,导体棒要克服安培力做功,将机械能转化为电能。

(三)反思总结

教师组织学生反思总结本节课的主要内容,重点是辨析相关概念的含义及其特点,并进行当堂检测。

(四)当堂检测

感生电场与感生电动势

【例1】 如图所示,一个闭合电路静止于磁场中,由于磁场强弱的变化,而使电路中产生了感应电动势,下列说法中正确的是( )

A.磁场变化时,会在在空间中激发一种电场

B.使电荷定向移动形成电流的力是磁场力

C.使电荷定向移动形成电流的力是电场力

D.以上说法都不对

洛仑兹力与动生电动势

【例2】如图所示,导体AB在做切割磁感线运动时,将产生一个电动势,因而在电路中有电流通过,下列说法中正确的是( )

A.因导体运动而产生的感应电动势称为动生电动势

B.动生电动势的产生与洛仑兹力有关

C.动生电动势的产生与电场力有关

D.动生电动势和感生电动势产生的原因是一样的

解析:如图所示,当导体向右运动时,其内部的自由电子因受向下的洛仑兹力作用向下运动,于是在棒的B端出现负电荷,而在棒的 A端显示出正电荷,所以A端电势比 B端高.棒 AB就相当于一个电源,正极在A端。

综合应用

【例3】如图所示,两根相距为L的竖直平行金属导轨位于磁感应强度为B、方向垂直纸面向里的匀强磁场中,导轨电阻不计,另外两根与上述光滑导轨保持良好接触的金属杆ab、cd质量均为m,电阻均为R,若要使cd静止不动,则ab杆应向_________运动,速度大小为_______,作用于ab杆上的外力大小为____________

答案:1.AC 2.AB 3.向上 2mg

课后练习与提高

1.如图所示,一个带正电的粒子在垂直于匀强磁场的平面内做圆周运动,当磁感应强度均匀增大时,此粒子的动能将( )

A.不变 B.增加

C.减少 D.以上情况都可能

2.穿过一个电阻为l Ω的单匝闭合线圈的磁通量始终是每秒钟均匀地减少2 Wb,则( )

A.线圈中的感应电动势一定是每秒减少2 V

B.线圈中的感应电动势一定是2 V

C.线圈中的感应电流一定是每秒减少2 A

D.线圈中的感应电流一定是2 A

3.在匀强磁场中,ab、cd两根导体棒沿两根导轨分别以速度v1、v2滑动,如图所示,下列情况中,能使电容器获得最多电荷量且左边极板带正电的是( )

A.v1=v2,方向都向右 B.v1=v2,方向都向左

C.v1>v2,v1向右,v2向左 D.v1>v2,v1向左,v2向右

4.如图所示,面积为0.2 m2的100匝线圈处在匀强磁场中,磁场方问垂直于线圈平面,已知磁感应强度随时间变化的规律为B=(2+0.2t)T,定值电阻R1=6Ω,线圈电阻R2=4Ω,求:

(1)磁通量变化率,回路的感应电动势;

(2)a、b两点间电压Uab

5.如图所示,在物理实验中,常用“冲击式电流计”来测定通过某闭合电路的电荷量.探测器线圈和冲击电流计串联后,又能测定磁场的磁感应强度.已知线圈匝数为n,面积为S,线圈与冲击电流计组成的回路电阻为R,把线圈放在被测匀强磁场中,开始时线圈与磁场方向垂直,现将线圈翻转180°,冲击式电流计测出通过线圈的电荷量为q,由此可知,被测磁场的磁磁感应强度B=__________

6.如图所示,A、B为大小、形状均相同且内壁光滑,但用不同材料制成的圆管,竖直固定在相同高度.两个相同的磁性小球,同时从A、B管上端的管口无初速释放,穿过A管的小球比穿过B管的小球先落到地面.下面对于两管的描述中可能正确的是( )

A.A管是用塑料制成的,B管是用铜制成的

B.A管是用铝制成的,B管是用胶木制成的

C.A管是用胶木制成的,B管是用塑料制成的

D.A管是用胶木制成的,B管是用铝制成的

答案:1.B 2.BD 3.C 4.(1)4V(2)2.4A 5. 6. AD

以上就是读趣百科小编为大家整理的2022高中物理电磁感应教案 电磁感应现象教案高中,希望大家能够喜欢,更多精彩内容请继续关注读趣百科。

活动I 自主活动 学生实验3

设问:如何使闭合线圈中产生感应电流?

活动II 学生实验2 探究感应电流产生的条件。

活动III 历史回眸 法拉第发现电磁感应现象的过程。

课件演示 电磁感应现象。

活动Ⅳ DIS学生实验 微弱磁通量变化时的感应电流。

大家谈

3、教学主要环节 本设计可分为三个主要的教学环节。

第一环节,通过实验观察与讨论,得出电磁感应现象与感应电流。

第二环节,通过学生探究实验,得出感应电流产生的条件;通过 “历史回眸”、“大家谈”,了解法拉第的研究过程,领略科学家的探究精神。

第三环节,通过DIS实验,了解电磁感应现象在实际生活中的应用。

七、教案示例

(一)情景引入:

1、观察演示实验,提出问题

1820年,丹麦物理学家奥斯特发现通电直导线能使小磁针发生偏转,从而揭示了电与磁之间的内在联系。

演示实验1 奥斯特实验。

那么,磁能生电吗?

演示实验2 摇绳发电

把一根长10米左右的电线与一导线的两端连接起来,形成一闭合回路,两个学生迅速摇动电线,另一学生将导线放到小磁针上方,观察小磁针是否偏转。

问题1:为什么导线中有电流产生?

2、导入新课

我们可以用这节课学习的知识来回答上面的问题。

(二)电磁感应现象

自奥斯特发现电能生磁之后,历史上许多科学家都在研究“磁生电”这个课题。

介绍瑞士物理学家科拉顿的研究。

自主活动:如何使闭合线圈中产生电流?

学生实验1:把条形磁铁放在线圈中,将灵敏电流计、线圈连成闭合回路,观察灵敏电流计指针是否偏转。

1、电磁感应现象

闭合回路中产生感应电流的现象,叫电磁感应现象。

2、感应电流

由电磁感应现象产生的电流,叫感应电流。

介绍英国物理学家、化学家法拉第的研究。

问题2:法拉第发现的使磁场产生电流的条件究竟是什么?

(三)产生感应电流的条件

学生实验2:探究感应电流产生的条件。

根据所给的器材:灵敏电流计、原线圈、副线圈、电键、滑动变阻器、导线等,设计实验方案,使线圈中产生感应电流。

小组交流方案,师生共同讨论产生感应电流的原因。

感应电流产生的条件:闭合回路、磁通量发生变化。

播放flash课件,进一步理解感应电流产生的条件。

介绍“历史回眸”栏目中法拉第发现电磁感应现象的过程。

(四)应用

讨论、解释:

1、书上的示例

2、摇绳发电的原理。

DIS学生实验:微弱磁通量变化时的感应电流。

大家谈

(五)总结(略)

(六)作业布置(略)

物理电磁感应教案4

一、教学任务分析

电磁感应现象是在初中学过的电磁现象和高中学过的电场、磁场的基础上,进一步学习电与磁的关系,也为后面学习电磁波打下基础。

以实验创设情景,通过对问题的讨论,引入学习电磁感应现象,通过学生实验探究,找出产生感应电流的条件。用现代技术手段“DIS实验”来测定微弱的地磁场磁通量变化产生的感应电流,使学生感受现代技术的重要作用。

通过“历史回眸”,介绍法拉第发现电磁感应现象的过程,领略科学家的献身精神,懂得学习、继承、创新是科学发展的动力。

在探究感应电流产生的条件时,使学生感受猜想、假设、实验、比较、归纳等科学方法,经历提出问题→猜想假设→设计方案→实验验证的科学探究过程;在学习法拉第发现电磁感应现象的过程时,体验科学家在探究真理过程中的献身精神。

二、教学目标

1.知识与技能

(1)知道电磁感应现象及其产生的条件。

(2)理解产生感应电流的条件。

(3)学会用感应电流产生的条件解释简单的实际问题。

2.过程与方法

通过有关电磁感应的探究实验,感受猜想、假设、实验、比较、归纳等科学方法在得出感应电流产生的条件中的重要作用。

3.情感、态度价值观

(1)通过观察和动手操作实验,体验乐于科学探究的情感。

(2)通过介绍法拉第发现电磁感应现象的过程,领略科学家在探究真理过程中的献身精神。

三、教学重点与难点

重点和难点:感应电流的产生条件。

四、教学资源

1、器材

(1)演示实验:

①电源、导线、小磁针、投影仪。

②10米左右长的电线、导线、小磁针、投影仪。

(2)学生实验:

①条形磁铁、灵敏电流计、线圈。

②灵敏电流计、原线圈、副线圈、电键、滑动变阻器、导线若干。

③DIS实验:微电流传感器、数据采集器、环形实验线圈。

2、课件:电磁感应现象flash课件。

五、教学设计思路

本设计内容包括三个方面:一是电磁感应现象;二是产生感应电流的条件;三是应用感应电流产生的条件解释简单的实际问题。

本设计的基本思路是:以实验创设情景,激发学生的好奇心。通过对问题的讨论,引入学习电磁感应现象和感应电流的概念。通过学生探究实验,得出产生感应电流的条件。通过“历史回眸”、“大家谈”,介绍法拉第发现电磁感应现象的过程,领略科学家在探究真理过程中的献身精神。

本设计要突出的重点和要突破难点是:感应电流的产生条件。方法是:以实验和分析为基础,根据学生在初中和前阶段学习时已经掌握的知识,应用实验和动画演示对实验进行分析,理解产生感应电流的条件,从而突出重点,并突破难点。

本设计强调问题讨论、交流讨论、实验研究、教师指导等多种教学策略的应用,重视概念、规律的形成过程以及伴随这一过程的科学方法的教育。通过学生主动参与,培养其分析推理、比较判断、归纳概括的能力,使之感受猜想、假设、实验、比较、归纳等科学方法的重要作用;感悟科学家的探究精神,提高学习的兴趣。

完成本设计的内容约需1课时。

六、教学流程

1、教学流程图

2、流程图说明

情景 演示实验1 奥斯特实验。

演示实验2 摇绳发电

问题:为什么导线中有电流产生?

物理电磁感应教案5

【教学目标】

1、知识与技能:

(1)、知道感应电动势,及决定感应电动势大小的因素。

(2)、知道磁通量的变化率是表示磁通量变化快慢的物理量,并能区别Φ、ΔΦ、 。

(3)、理解法拉第电磁感应定律的内容、数学表达式。

(4)、知道E=BLvsinθ如何推得。

(5)、会用 解决问题。

2、过程与方法

(1)、通过学生实验,培养学生的动手能力和探究能力。

(2)、通过推导闭合电路,部分导线切割磁感线时的感应电动势公式E=BLv,掌握运用理论知识探究问题的方法。

3、情感态度与价值观

(1)、从不同物理现象中抽象出个性与共性问题,培养学生对不同事物进行分析,找出共性与个性的辩证唯物主义思想。

(2)、通过比较感应电流、感应电动势的特点,引导学生忽略次要矛盾、把握主要矛盾。

【教学重点】法拉第电磁感应定律。

【教学难点】感应电流与感应电动势的产生条件的区别。

【教学方法】实验法、归纳法、类比法

【教具准备】

多媒体课件、多媒体电脑、投影仪、检流计、螺线管、磁铁。

【教学过程】

一、复习提问:

1、在电磁感应现象中,产生感应电流的条件是什么?

答:穿过闭合回路的磁通量发生变化,就会在回路中产生感应电流。

2、恒定电流中学过,电路中存在持续电流的条件是什么?

答:电路闭合,且这个电路中一定有电源。

3、在发生电磁感应现象的情况下,用什么方法可以判定感应电流的方向?

答:由楞次定律或右手定则判断感应电流的方向。

二、引入新课

1、问题1:既然会判定感应电流的方向,那么,怎样确定感应电流的强弱呢?

答:既然有感应电流,那么就一定存在感应电动势.只要能确定感应电动势的大小,根据闭合电路欧姆定律就可以确定感应电流大小了.

2、问题2:如图所示,在螺线管中插入一个条形磁铁,问

①、在条形磁铁向下插入螺线管的过程中,该电路中是否都有电流?为什么?

答:有,因为磁通量有变化

②、有感应电流,是谁充当电源?

答:由恒定电流中学习可知,对比可知左图中的虚线框内线圈部分相当于电源。

③、上图中若电路是断开的,有无感应电流电流?有无感应电动势?

答:电路断开,肯定无电流,但仍有电动势。

3、产生感应电动势的条件是什么?

答:回路(不一定是闭合电路)中的磁通量发生变化.

4、比较产生感应电动势的条件和产生感应电流的条件,你有什么发现?

答:在电磁感应现象中,不论电路是否闭合,只要穿过回路的磁通量发生变化,电路中就有感应电动势,但产生感应电流还需要电路闭合,因此研究感应电动势比感应电流更有意义。(情感目标)

本节课我们就来一起探究感应电动势

三、进行新课

(一)、探究影响感应电动势大小的因素

(1)探究目的:感应电动势大小跟什么因素有关?(学生猜测)

(2)探究要求:

①、将条形磁铁迅速和缓慢的插入拔出螺线管,记录表针的最大摆幅。

②、迅速和缓慢移动导体棒,记录表针的最大摆幅。

③、迅速和缓慢移动滑动变阻器滑片,迅速和缓慢的插入拔出螺线管,分别记录表针的最大摆幅;

(3)、探究问题:

问题1、在实验中,电流表指针偏转原因是什么?

问题2:电流表指针偏转程度跟感应电动势的大小有什么关系?

问题3:在实验中,快速和慢速效果有什么相同和不同?

(4)、探究过程

安排学生实验。(能力培养)

教师引导学生分析实验,(课件展示)回答以上问题

学生甲:穿过电路的Φ变化 产生E感 产生I感.

学生乙:由全电路欧姆定律知I= ,当电路中的总电阻一定时,E感越大,I越大,指针偏转越大。

学生丙:磁通量变化相同,但磁通量变化的快慢不同。

可见,感应电动势的大小跟磁通量变化和所用时间都有关,即与磁通量的变化率有关.

把 定义为磁通量的变化率。

上面的实验,我们可用磁通量的变化率来解释:

学生甲:实验中,将条形磁铁快插入(或拔出)比慢插入或(拔出)时, 大,I感大,

E感大。

实验结论:电动势的大小与磁通量的变化快慢有关,磁通量的变化越快电动势越大。磁通量的变化率越大,电动势越大。

(二)、法拉第电磁感应定律

从上面的实验我们可以发现, 越大,E感越大,即感应电动势的大小完全由磁通量的变化率决定。精确的实验表明:电路中感应电动势的大小,跟穿过这一电路磁通量的变化率成正比,即E∝ 。这就是法拉第电磁感应定律。

(师生共同活动,推导法拉第电磁感应定律的表达式)(课件展示)

E=k

在国际单位制中,电动势单位是伏(V),磁通量单位是韦伯(Wb),时间单位是秒(s),可以证明式中比例系数k=1,(同学们可以课下自己证明),则上式可写成

E=

设闭合电路是一个N匝线圈,且穿过每匝线圈的磁通量变化率都相同,这时相当于n个单匝线圈串联而成,因此感应电动势变为

E=n

1.内容:电动势的大小与磁通量的变化率成正比

2.公式:ε=n

3.定律的理解:

⑴磁通量、磁通量的变化量、磁通量的变化量率的区别Φ、ΔΦ、ΔΦ/Δt

⑵感应电动势的大小与磁通量的变化率成正比

⑶感应电动势的方向由楞次定律来判断

⑷感应电动势的不同表达式由磁通量的的因素决定:

当ΔΦ=ΔBScosθ则ε=ΔB/ΔtScosθ

当ΔΦ=BΔScosθ则ε=BΔS/Δtcosθ

当ΔΦ=BSΔ(cosθ)则ε=BSΔ(cosθ)/Δt

注意: 为B.S之间的夹角。

4、特例——导线切割磁感线时的感应电动势

用课件展示电路,闭合电路一部分导体ab处于匀强磁场中,磁感应强度为B,ab的长度为L,以速度v匀速切割磁感线,求产生的感应电动势?(课件展示)

解析:设在Δt时间内导体棒由原来的位置运动到a1b1,这时线框面积的变化量为

ΔS=LvΔt

穿过闭合电路磁通量的变化量为

ΔΦ=BΔS=BLvΔt

据法拉第电磁感应定律,得

E= =BLv

这是导线切割磁感线时的感应电动势计算更简捷公式,需要理解

(1)B,L,V两两垂直

(2)导线的长度L应为有效切割长度