首页>科技>机械/仪表

高等数学中的重要思想方法

高等数学中的几种重要思想方法

中国地质大学(武汉)徐达

摘要:高等数学是工科类本科学生重要的基础课程,对同学们今后的学习、工作有极大帮助。本文通过列举并分析高等数学学习中的几种重要思想方法,并从这几种方法的原理、应用实例和适用条件等方面入手进行阐释,使高等数学的学习更科学、规范、高效。

关键词:高等数学;思想方法

Several important thinking methods of advanced

mathematics

XU Da

Abstract: Advanced mathematics is an important basis course of engineering courses, which will be helpful for our study and work a lot in future. This article lists and analyzes several important thinking methods of mathematics learning and interprets some aspects of these methods including principles, using examples and suitable conditions. These will make advanced mathematics learning more scientific, normal and concentrated.

Key words: advanced mathematics; important thinking methods

引言

高等数学的学习有着独特的复杂性。一方面,作为一门基础学科,高等数学在工科课程中有着无法替代的重要地位。另一方面,高等数学的内容较为繁多复杂,对学习者知识掌握的熟练性和知识运用的灵活性有很高要求,往往令很多同学感到困难或不易接受。因此,要想将高等数学学好,除了用功稳固知识的掌握,更要能学习这门学科的一些重要思想方法,以此为突破口,才能对课程内容及其延伸有更深的理解,才能将各部分的知识灵活运用,以达到事半功倍的效果。

本文着重总结了在高等数学中运用广泛,对学习者要求较高的四种思想方法,分别是函数与方程的思想、数形结合思想、分类讨论的思想和转化与化归的思想。如果能将以此为代表的思想方法深入研究、探讨,透彻理解,对高等数学的学习与知识运用有极大帮助。

一、函数与方程的思想

函数与方程的思想自始至终贯穿在高等数学的教材中.很好的掌握这种思想,用函数与方程的方法来解决高等数学中的一些问题,往往可以起到良好的效果.运用函数的方法,引入辅助函数,化静为动,化离散为连续,将所讨论的问题转化为函数与方程的问题加以解决,从而在更“一般”的角度上来解决“特殊”问题.这也正说明了用函数与方程的思想来解决问题,

相关推荐